
16 The Delphi Magazine Issue 59

Under Construction:
Delphi 5 Active Server Objects, 2
by Bob Swart

This time, we’ll continue from
last month and finish our cov-

erage of Active Server Pages and
Objects with Delphi 5. We’ll exam-
ine the way in which WebBroker
and InternetExpress components
can be used by an Active Server
Object, and finally see some semi-
debugging techniques.

Request
Last month, we used the Active
Server Object wizard to create an
ASP Object. We then used the Type
Library Editor to add a method
named ASProduce to it, which pro-
duced some dynamic HTML. We
then saw how to deploy and test
Active Server Objects inside Active
Server Pages. What we didn’t
examine was how Active Server
Pages are most often called: as the
results of HTML input forms (also
sometimes called CGI forms), han-
dling input as well as producing
output.

We did explore the internal ASP
objects Response and Session. This
time, we start with the Request
object, which is also an internal
ASP object, and available to our
Active Server Object as a property.
Request can get input in three dif-
ferent ways: using the CGI input
form (the form variables), using
the ‘fat’ URL (the query string vari-
ables) and finally using cookies.
For each of these, there is a collec-
tion of items (containing name-
value pairs) that we can use,
namely Form, QueryString and
Cookies. Each of these three prop-
erties is of type IRequest-
Dictionary: an interface which in
turn contains a (default) Items
array property that we can supply
with an OleVariant name to get an
OleVariant value back. In code, to
get the value of the form variable
Name, we’d have to look at
Request.Form.Items[‘Name’] or
(since it is the default property)
simply Request.Form[‘Name’].
Similarly, to get the value of the

cookie with the name Chocolate,
we’d have to look at Request.
Cookies[‘Chocolate’]. As a
reminder: these string names that
we pass as the ‘index’ for the array
parameter are case insensitive, so
Request.Form[‘Name’] returns the
same as Request.Form[‘name’].

Example DrBob42.HTM
Let’s make an example HTML input
form, so we can experiment with
the different ways of getting input.
For this example, I’ll use a simple
HTML form with user name and
password fields. The HTML syntax
is shown in Listing 1. The result
can be seen in Figure 1.

Note the password edit box,
which shows only asterisks. This
input type is very useful, especially
in situations where people have to
enter sensitive information like
passwords, of course. The ACTION
part of our HTML form calls the
drbob42.asp file that we made last
time, we only have to modify the
ASProduce method to obtain the
input data using the ASP Request
object: see Listing 2.

Since we’re using the POST
method, we need to use Request.
Form to obtain the values of the
UserName and Password variables.
We can then present them back in
the browser using the Response.
Write method.

This concludes the built-in
support of internal ASP objects
that Delphi 5 offers. Using the
Request we can get any input, and
using Response.Write we can pro-
duce any output.

A more interesting question now
is how we can extend this simple
Writemethod by looking at the sev-
eral HTML-producing components
that already exist in Delphi. Yes,
I’m talking about the WebBroker
and InternetExpress components
here. Let’s see how these can be
combined with an Active Server
Object.

<HTML>
<BODY>
<FORM ACTION="http://192.168.92.201/doc/drbob42.asp" METHOD=POST>
Naam: <INPUT TYPE=edit NAME="UserName">

Password: <INPUT TYPE=password NAME="Password">
<P>
<INPUT TYPE=submit Value="Login">
</FORM>
</BODY>
</HTML>

➤ Listing 1

➤ Figure 1

July 2000 The Delphi Magazine 17

Producing HTML
First of all, there are at least two
ways in which we can use
WebBroker components (such as a
TPageProducer). We could create
and use them dynamically, or we
could use a web module, drop
them on it and configure every-
thing at design-time. While the
former would probably work fine
for a simple TPageProducer, it gets
more complex once we start talk-
ing about a TDataSetTableProducer
(which needs an additional
TDataSet component, as well as
numerous settings that are really
best applied at design-time). So,
let’s skip the dynamic component
creation.

The alternative, on the other
hand, isn’t really directly applica-
ble either. We can only get a web
module as part of a WebBroker
project, CGI or ISAPI. Of course,
you can ‘fake’ this by creating a
WebBroker project (CGI or ISAPI)
and then start an ActiveX library
and Active Server Object and share
the web module between the
WebBroker and ActiveX projects.
This is actually quite useful, as
we’ve already seen that it is hard to
debug Active Server Objects. And
once you share a web module
between an ISAPI DLL and an
ActiveX (ASO) project, you can at
least debug the ISAPI DLL using
good old IntraBob, for example.

Multi-Threading
Say we have a unit with a web
module that we share between an
ISAPI DLL and the ASP Object.
There’s one thing that the
WebBroker takes care of for us
behind the scenes, and that’s man-
agement of requests and web
module instances in a queue. When
writing a WebBroker application,
we don’t have to concern our-
selves with the possibility of multi-
ple requests working with the
same web module. In fact, we just
get a number of web module
instances and, for every incoming
request, one of these instances is
‘activated’ with that particular
request.

With Active Server Objects,
there is no such queue. This means
we have to create our own web

module (or
data module,
as we’ll see in a
moment). But
if we add one
global web
module to the
project, we
would be in
trouble, as
multiple inst-
ances of the
Active Server
Object would
all access the same web module
instance, which would guarantee
some nice multi-threading clashes
(if not database session conflicts
first). Apart from those potential
problems, you’ll find that it isn’t
easy to add a web module to an
existing project (just about the
only way is to ‘borrow’ a web
module unit from an existing CGI or
ISAPI WebBroker project, which is
indeed what I often do).

A more sensible way to start, if
you don’t want to include other
WebBroker targets, is to do File |
New and add a data module to your
project. Normally, you would also
have to make sure you have unset
the Auto create forms option in the
Tools | Environment Options |
Preferences dialog, but it doesn’t
seem to matter inside ActiveX
libraries (no forms or data

modules are autocreated anyway).
As a consequence, we have to
create and destroy our own
instance of the data module.
When? Well, I think there’s no
better moment to make use of the
OnStartPage and OnEndPage meth-
ods, as shown in Listing 3.

Note that we also needed to add
a private member field DataMod of
type TDataModule2 (or whatever the
type is of your data module). This
technique will ensure that every
Active Server Page will be served
by a unique instance of the data
module. Of course, when using
BDE databases and tables on this
data module, we still need to add a
TSession component and set
AutoSessionName to True to avoid
session conflicts, but at least we
can access the components on the
data module in a thread-safe way.

procedure TDrBob42.ASProduce;
var
Name,Pass: String;

begin
Name := Request.Form['UserName'];
Response.Write('<H1>Hello, '+Name+'!</H1>');
Response.Write('<HR>');
Response.Write('
The value of "UserName" = '+Name);
Name := Request.Form['username'];
Response.Write('
The value of "username" = '+Name);
Pass := Request.Form['password'];
Response.Write('
The value of "password" = '+Pass);
Response.Write('<P>');
Response.Write('The time is: '+TimeToStr(Now));

end;

procedure TDrBob42.OnStartPage(const AScriptingContext: IUnknown);
{ DataMod is a private memberfield of type TDataModule2 }
begin
inherited OnStartPage(AScriptingContext);
DataMod := TDataModule2.Create(nil);

end;
procedure TDrBob42.OnEndPage;
begin
FreeAndNil(DataMod);
inherited OnEndPage;

end;

➤ Figure 2

➤ Above: Listing 2 ➤ Below: Listing 3

18 The Delphi Magazine Issue 59

ASP PageProducing
Once we have this data module, we
can add all kinds of HTML produc-
ing components to it. For example
the TPageProducer or TDataSet-
PageProducer (to keep it simple at
first).

Just drop a TPageProducer com-
ponent (from the Internet tab) on
the new data module you’ve just
created. As usual, we can enter
some HTML content at design-time
to the HTMLDoc property (of type
Strings) or we can point the
HTMLFile property to an external
file. For the purpose of this demo, I
always use the HTMLDoc property,
but in real life the advantage of
using the HTMLFile property is that
it allows you to potentially change
the entire look and feel of that
particular HTML fragment without
having to recompile (and also re-
deploy!) your web server applica-
tion. And if it’s one thing we
learned last month, then it’s that
Active Server Objects are hard to
re-deploy, as it means shutting
down your IIS Admin Manager (or
the particular virtual directory, as I
found out later, but that’s no easy
task either). Anyway, for this demo
we just keep using the HTMLDoc
property and enter the following
lines to it:

Hello, ASP
<P>
Today is:
<#DATE FORMAT=YYYY/MM/DD>

<P>
<HR>

There is one so-called #-tag, DATE,
which even has a parameter
FORMAT. Currently, FORMAT is set to
YYYY/MM/DD which leads to a useful
date representation (the only one
that you can sort easily, to mention
the most obvious advantage).

The OnHTMLTag event handler for
the PageProducer component has to
work correctly with or without a
FORMAT parameter present (in
TagParams): see Listing 4.

Only one question remains: how
is the PageProducer used by our
Active Server Object? Well, this is
done in the same ASProduce
method that we’ve used before.
Only this time, we need to ‘call’ the
Content property of the Page-
Producer1 from the DataMod, and
pass the String result to the
Response.Write method. The code
for this is is shown in Listing 5.

The result is as can be expected,
and merely proves that we can call
the HTML page producing compo-
nents’ Content property from
anywhere.

TDataSetTableProducer
A similar result can be obtained
using a TDataSetTableProducer
component. And, in fact, since we
often need to visually manipulate
the Columns property of the
TDataSetTableProducer at design-
time, it’s important not to have to
create it dynamically!

Just to demonstrate how it all
works, drop a TQuery on the data
module, set the DatabaseName to
DBDEMOS and write the following
query in the SQL property:

SELECT * FROM BIOLIFE.DB

Double click on the Active prop-
erty to open the query (if we made
no mistakes). Now we can click on
the ellipsis next to the Columns
property in order to work on the
output. Make sure to add all fields
you want to see. Finally, the
ASProduce method needs only

procedure TDataModule2.PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin
if TagString = 'DATE' then
if TagParams.Values['FORMAT'] <> '' then
ReplaceText := FormatDateTime(TagParams.Values['FORMAT'],Date)

else
ReplaceText := DateToStr(Date)

end;

procedure TDrBob42.ASProduce;
var
Name: String;

begin
Name := Request.Form['UserName'];
Response.Write('<H1>Hello, '+Name+'!</H1>');
Response.Write('<HR>');
Response.Write(DataMod.PageProducer1.Content); // WebBroker!
Response.Write('<P>The time is: '+TimeToStr(Now));

end;

procedure TDrBob42.ASProduce;
var Name: String;
begin
Name := Request.Form['UserName'];
Response.Write('<H1>Hello, '+Name+'!</H1>');
Response.Write('<HR>');
Response.Write(DataMod.DataSetTableProducer1.Content); // WebBroker!

end;

➤ Above: Listing 5 ➤ Below: Listing 6

➤ Listing 4

➤ Figure 3

20 The Delphi Magazine Issue 59

minor changes to show the output
of the TDataSetTableProducer (see
Listing 6). The result looks just
great (Figure 3).

TQueryTableProducer
Now that we’ve seen how to use the
output of a TDataSetTableProducer,
let’s take it one step further: to the
TQueryTableProducer (which is why
we’ve been using a TQuery so far
and not a TTable component). The
Query TableProducer is the most
advanced of the WebBroker com-
ponents, as it connects the input
fields (found in the Request) to the
Query parameters. For example, we
can modify the above query to
work with a parameter, by specify-
ing the following SQL query:

SELECT * FROM BIOLIFE.DB AS B
WHERE (B."Length_in" >= :LEN)

to specify that we’re looking for
fish that have a length of LEN inches
or more. Note that before we can
activate (open) this query, we first
have to specify the parameter
information for LEN (DataType is
ftInteger, ParamType is ptInput, and
as default Value we can assign it to
the integer value 7). As soon as we
open the parameterised query, we
can connect it to a TQuery-
TableProducer and use the columns
editor as before to shape the
appearance of the HTML output
just as you want.

The only problem is that
TQueryTableProducer relies on its
Dispatcher property (of type
TCustomWebDispatcher) to provide

the Request of type TWebRequest.
Without a Dispatcher, there is no
way to obtain the Request values
that can be matched to the query
parameters. We could add a
WebDispatcher component to the
data module, turning it effectively
into a web module (or use a web
module from the start). However,
the web dispatcher will never be
actually dispatched: we’re inside
an Active Server Object, remem-
ber? So the Request object of type
TWebRequestwill never be filled with
name-value pairs, and a regular
TQueryTableProducer will not be
able to match its input values with
the Query parameters.

ASO QueryTableProducer
Dr.Bob to the rescue! What we
need is a way for the TQuery-
TableProducer to get to the Active
Server Object IRequest interface
instead of the WebBroker Request
object. And while we can’t just
change the source code of the
TQueryTableProducer, we can derive
a new component from it, called
TDMQueryTableProducer and over-
ride the function Content in which
the actual matching of parameters
and production of HTML takes
place. Apart from this new Content
function, we also need a new prop-
erty Requestof type IRequest, that’s
right, the new TDMQueryTable-
Producer will get a pointer to

the IRequest interface from its own
Active Server Object. And once
inside the Content function, it’s
easy to walk through the parame-
ters of the query and for each one
try to find a matching value inside
the request (just by assigning the
Request.Item of the Query.Param-
Name to the Query.ParamValue). And
this, lo and behold, works like a
charm!

The source code for the new
TDMQueryTableProducer component
can be seen in Listing 7.

Just install this component on
your component palette (maybe
on the Internet tab instead of the
DrBob42 tab, but that’s your own
choice), and you’re ready to go.
Active Server Objects utilising the
full power of the WebBroker com-
ponents. Just one more step and
we’re ready to take on
InternetExpress...

Producing XML
So far, we’ve seen how to use the
HTML producing components
from WebBroker. Apart from
Active Server support, Delphi 5
introduced another big feature
named InternetExpress (the com-
bined force of WebBroker and
MIDAS), including a MidasPage-
Producer that produced (D)HTML
and XML, which was displayed

unit DMQueryTableProducer;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, DBWeb, DB, Asptlb;

type
TDMQueryTableProducer = class(TQueryTableProducer)
private
FRequest: IRequest;

public
constructor Create(AOwner: TComponent); override;
function Content: String; override;

published
property Request: IRequest read FRequest write FRequest;

end;
procedure Register;
implementation
procedure Register;
begin
RegisterComponents('DrBob42', [TDMQueryTableProducer]);

end;
{ TDMQueryTableProducer }

constructor TDMQueryTableProducer.Create(AOwner: TComponent);
begin
inherited;
FRequest := nil;

end;
function TDMQueryTableProducer.Content: String;
var
i: Integer;

begin
Result := '';
if Query <> nil then begin
Query.Close;
if Assigned(FRequest) then
for i:=0 to Pred(Query.ParamCount) do
Query.Params[i].Value :=
FRequest.Item[Query.Params[i].Name];

Query.Open;
if DoCreateContent then
Result := Header.Text +
HTMLTable(Query, Self, MaxRows) + Footer.Text

end
end {Content};
end.

➤ Listing 7
procedure TDrBob42.ASProduce;
var Name: String;
begin
Name := Request.Form['LEN'];
Response.Write('<H1>Hello, '+Name+'!</H1>');
Response.Write('<HR>');
Response.Write(DataMod.MidasPageProducer1.Content); // InternetExpress!

end;

➤ Listing 8

July 2000 The Delphi Magazine 21

using a number of additional
JavaScript files. It would be very
nice if we could use the
MidasPageProducer inside our
Active Server Object as well, so
let’s sit back for our last big experi-
ment this month.

Drop a DataSetProvider compo-
nent on the data module and con-
nect its dataset property to the
Query component (we won’t be
needing a truly multi-tier solution,
we’ve already seen in The Delphi
Magazine Issues 51 and 52 that a
standalone InternetExpress solu-
tion works just fine). Now drop an
XMLBroker and MidasPageProducer
component. Set the XMLBroker.
ProviderName to DataSetProvider1
and double click on Connected to
make sure data is flowing from the
Queryvia the DataSetProvider to the
XMLBroker.

Now, right click on the
MidasPageProducer to get to the
Web Page Editor. In here, right
click again to add a DataForm, and as
sub-components add a DataGrid
with DataNavigator component.
Set the XMLComponent property

of DataNavigator to the DataGrid
and make sure the DataGrid’s
XMLBroker property points to
XMLBroker1, so we can see the meta
data shaping the grid (the grid col-
umns and their titles appear).
We’re not done yet, because we
need to right click on the DataGrid
to add all the fields we want
(remember: if we don’t explicitly
add any fields here, we won’t see
any at runtime either). I just select
all the fields except for Memo and
Graphic.

Now, close the Web Page Editor,
and return to the MidasPageProd-
ucer. Inside
its Include-
PathURL prop-
erty we must
specify where
the JavaScript
files can be
found (see the
SOURCE\WEB
MIDAS direc-
tory of your

Delphi 5 installation for these
files).

At this time, we’re ready to
return to the Active Server Object,
specifically the ASProduce method,
and make use of the
MidasPageProducer, which can be
done as shown in Listing 8.

The result looks and feels fantas-
tic (Figure 4): interactive data
inside the web browser, using XML
to contain the data, and all this
generated by a MidasPageProducer
used by an Active Server Object.

There’s one big question: like
the QueryTableProducer, which

➤ Figure 4

22 The Delphi Magazine Issue 59

required its input from the Request
class (and not the IRequest class),
the Apply Updates button also com-
municates with the world behind
(beyond?) the browser. Apply
Updates normally connects to the
WebBroker application and sends
the delta data packets so the data-
base can be updated and/or a rec-
oncile error page can be shown. In
this case, the Active Server Object
has no ‘action’ item that can be
called, and neither did we specify a
special ‘update’ method.

To tell you the truth, currently I
have no idea how to invoke the
Active Server Object when you
click on the Apply Updates button.
So, I’ve decided to take the easy
road and (for now at least) declare
the use of InternetExpress within
Active Server Objects to be
read-only. As a consequence, we
can remove the insert, delete,
undo, post and, obviously, apply
updates button and focus on navi-
gating only. You can even set the
fields to be read-only (although
this doesn’t improve their read-
ability inside Internet Explorer, so
you have to decide for yourself if
you want to do that, I don’t).

I leave it as an exercise for the
reader to derive a new
QueryMidasPageProducer that will
connect the input field Len to the
query parameter Len, just like the
regular QueryPageProducer. If you’re
not sure how to do it, check my
website (at www.drbob42.com)
where I plan to present this compo-
nent in an upcoming Dr.Bob
Examines... column.

Debugging Support For ASO
Another item that I promised you
for this month was a little bit of
enhanced debugging support for
Active Server Objects.

They are really hard to debug,
believe me, and the text on pages
49-4 and 49-5 from the Delphi 5
Developer’s Guide is, I’m afraid, just
plain wrong. It doesn’t work if you
try to set your web server as the
host application as for ISAPI DLLs,
since the Active Server Object is
loaded by the ASP.DLL ISAPI DLL,
and not by your web server. Oh
well, it was too good to be true
anyway.

Fortunately, there are a number
of methods you can still use to
show the progress and other
things of your Active Server Pages.
Message boxes, for example, are
always helpful. Personally, I’m very
fond of CodeSite from Raize Soft-
ware (www.raize.com). This is a
two-part debugging aid that comes
with a CodeSite message viewer
and a CodeSite object that you can
use to send just about everything
to the viewer. The only important
thing you have to do when you
start to debug Active Server
Objects this way is to make sure
they can actually ‘talk’ to the desk-
top (or the CodeSite message
viewer for that matter), otherwise
a messagebox or CodeSite method
will have no effect at all. The trick is
to go to the Control Panel, select
the Services applet and then go to
the IIS Admin Service (the one that
you have to unload to free your
Active Server Object from
memory, remember?). Select this
service, click on startup and make
sure the allow service to interact
with desktop option is selected.
This works for NT4 Server with SP5
and IIS4 as the web server.

ASP 3.0 And MTS
Finally, I want to show you that, for
Delphi 5 developers, the difference
between ASP 2.0 Objects and ASP
3.0 Objects is not that much. So far,
we’ve only seen ASP 2.0 Objects,
using the OnStartPage/OnEndPage
event-level methods. Windows
2000 and IIS 5.0 now support ASP
3.0, which uses an Object Context
and MTS to handle much of the
internal implementation details.
The base class TASPObject for ASP
2.0 is replaced by TASPMTSObject for
ASP 3.0. Apart from that, however,
the ‘usage’ interface for Delphi 5
developers is almost 100% identi-
cal. We again have Request,
Response, Session, Application and
Serverobjects, and we still commu-
nicate using Form, QueryString and
Cookies, and the Response.Write
method. The main difference is
that with ASP 3.0 we use MTS
behind the scenes, which of course
means that the target machine
must have a working MTS configu-
ration! Apart from that, the only

Delphi 5 coding difference is that
an ASP 3.0 Object does not have
the OnStartPage and OnEndPage
events (so you have to create your
data module inside the construc-
tor, for example).

Conclusions
Let’s look back at what we’ve
learned this time and last time.
First of all, Delphi 5 contains ‘basic’
support for Active Server Objects,
with the best part being that it
shields us from most of the ASP 2.0
and ASP 3.0 differences. Second,
we can use the existing WebBroker
components as additional HTML
producing aids. However, when it
comes to combining ASP with
InternetExpress we’re stuck with
read-only support (at least for
now, until I’ve found a way to con-
nect the Apply Updates button back
to the XMLBroker component).

Finally, we’ve seen that although
Active Server Objects are really
difficult to debug, we can make
sure they can interact with the
desktop so we can use old fash-
ioned debugging techniques like
messagebox and other helpful
debugging tools like CodeSite.

Next Time
Next time we’ll continue with the
MIDAS 3 coverage (from Issue 57)
and turn our attention to Object
Pooling (of remote data modules)
and Object Brokering (of connec-
tions): two techniques in MIDAS 3
that are very interesting, to say the
least. We’ll see what these con-
cepts mean and how we can use
them to our advantage, so stay
tuned...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is an @-
Consultant, Delphi Trainer and
co-founder of the Delphi
OplossingsCentrum of TAS
Advanced Technologies (www.
tas-at.com) in The Netherlands.

	Request
	Example DrBob42.HTM
	Producing HTML
	Multi-Threading
	ASP PageProducing
	TDataSetTableProducer
	TQueryTableProducer
	ASO QueryTableProducer
	Producing XML
	Debugging Support For ASO
	ASP 3.0 And MTS
	Conclusions
	Next Time

